HIGH VOLTAGE XLPE CABLE SYSTEMS
Technical User Guide
Content

1. General information on High Voltage XLPE Cable Systems ______________ 3
 1.1. Introduction __ 3
 1.2. Cable selection process _____________________________________ 3
 1.3. Service life __ 4

2. Cable layout and system design ___________________________________ 6
 2.1. Electrical field ___ 6
 2.2. Capacity, charging current ________________________________ 6
 2.3. Inductance, Inductive reactance ______________________________ 7
 2.4. Losses in cables __ 7
 2.5. Earthing methods, induced voltage ___________________________ 8
 2.6. Short-circuit current capacity _______________________________ 10
 2.7. Dynamic forces __ 11
 2.8. Metallic sheath types __ 11

3. XLPE Cable System Standards ____________________________________ 13

4. Technical data sheets __ 14
 500 / 290 kV XLPE Cable
 400 / 230 kV XLPE Cable
 345 / 200 kV XLPE Cable
 220 / 127 kV XLPE Cable
 132 / 76 kV XLPE Cable

5. XLPE Cable Reference Projects from Brugg __________________________ 20
1. General information on High Voltage Cable Systems

1.1 Introduction

The development of high voltage XLPE Cable Systems goes back to the 1960s. Since then production and material technology have improved significantly, providing reliable and maintenance-free products to the utility industry. At present, numerous high voltage XLPE cable systems with nominal voltages up to 500 kV and with circuit lengths up to 40 km are in operation worldwide.

Cable systems are equipped with accessories, which have passed the relevant type tests pursuant to national and international standards, such as long-duration tests. As one of the first XLPE cable manufacturers worldwide Brugg Cables passed a Prequalification Test on a 400 kV XLPE Cable System according to the relevant international standard IEC 62067 (2001). This test required one year of operation, along with the thermal monitoring of all cables, joints and terminations installed. It was successfully completed at CESI Laboratory in Milan, Italy in 2004.

Modern XLPE cables consist of a solid cable core, a metallic sheath and a non-metallic outer covering. The cable core consists of the conductor, wrapped with semiconducting tapes, the inner semiconducting layer, the solid main insulation and the outer semiconducting layer. These three insulation layers are extruded in one process. The conductor of high voltage cables can be made of copper or aluminium and is either round stranded of single wires or additionally segmented in order to reduce the current losses.

Depending on the customer’s specifications it can be equipped with a longitudinal water barrier made of hygroscopic tapes or powder. The main insulation is cross-linked under high pressure and temperature. The metallic sheath shall carry the short-circuit current in case of failure. It can be optionally equipped with fibers for temperature monitoring. Finally, the outer protection consists of extruded Polyethylene (PE) or Polyvinylchloride (PVC) and serves as an anti-corrosion layer. Optionally it can be extruded with a semiconducting layer for an after-laying test and additionally with a flame-retardant material for installation in tunnels or buildings if required.

1.2 Cable selection process

As one of just a few providers worldwide, Brugg Cables can offer a broad range of both XLPE cables (up to 500 kV) and oil-filled cables (up to 400 kV) as well as their accessories.

This broad product range together with a systematic analysis of the technical requirements enables the user to find the right solution for every application. Additionally, our consulting engineers can assist you in the development of customized solutions.
1.3 Service life

Cables are among the investment goods with a high service life of over 40 years. The service life of a cable is defined as its operating time. It is influenced by the applied materials, the constructive design, the production methods and the operating parameters.

Regarding the material technology Brugg Cables has many years of experience and investigation together with extensive experience in the field of cable systems gained over the years.
The following rules apply for all organic insulation materials in general:
- An increase of the operating temperature by 8 to 10°C reduces the service life by half.
- An increase of the operating voltage by 8 to 10% reduces the service life by half.

The influence of the voltage on the service life is expressed in the following service life law (see graph above):

\[t \cdot E^n = \text{const} \]

with
- \(E \) = Maximum field strength at the conductor surface of the cable
- \(n \) = Exponent stating the slope
- \(t \) = Time

Other operating parameters of decisive importance are:
- Voltage level and transient voltages such as switch operations, lightning impulses
- Short-circuit current and related conductor temperatures
- Mechanical stress
- Ambient conditions like humidity, ground temperatures, chemical influences
- Rodents and termites in the vicinity
2. Cable layout and system design

The dimensioning of a high voltage cable system is always based on the specifications and demands of the project at hand. The following details are required for calculation:
- The type of cable insulation
- Nominal and maximum operating voltage
- Short-circuit capacity or short-circuit current with statement of the effect time
- Transmission capacity or nominal current
- Operating mode: permanent operation or partial load operation (load factors)

- Ambient conditions:
 - Type of installation
 - Ambient temperatures (incl. external effects)
 - Special thermal resistance of the ground

The calculation of the admissible load currents (ampacity) and the cable temperatures is performed in accordance with the IEC publication 60287. At Brugg Cables, professional computer programs are in use for the calculation of the various cable data.

2.1 Electrical field

In initial approximation, the main insulation of a high voltage XLPE cable can be regarded as a homogenous cylinder. Its field distribution or voltage gradient is therefore represented by a homogenous radial field. The value of the voltage gradient at a point \(x \) within the insulation can therefore be calculated as:

\[
E_x = \frac{U_o}{r_x \cdot \ln \left(\frac{r_a}{r_i} \right)} \quad \text{(kV/mm)}
\]

with

\(U_o \) = Operating voltage (kV)
\(r_x \) = Radius at position \(x \) (mm)
\(r_a \) = External radius above the insulation (mm)
\(r_i \) = Radius of the internal field delimiter (mm)

The electrical field strength is highest at the inner semiconductor and lowest above the insulation (below the external semiconductor, \(r_x = r_a \)).

Field distribution within a high voltage XLPE cable

2.2 Capacity, charging current

The operating capacity depends on the type of insulation and its geometry. The following formula applies for all radial field cables:

\[
C_b = \frac{5.56 \cdot \varepsilon_r}{\ln \left(\frac{D}{d} \right)} \quad \text{(µF/km)}
\]

with

\(\varepsilon_r \) = Relative permittivity \ (XLPE: 2.4)
\(D \) = Diameter over main insulation (mm)
\(d \) = Diameter over inner semiconductor (mm)

Single-core high voltage XLPE cables represent an extended capacitance with a homogenous radial field distribution. Thus a capacitive charging current to earth results in the following formula:

\[
I_C = U_o \cdot \omega \cdot C_b \quad \text{(A/km)}
\]

with

\(U_o \) = Operating voltage \ (kV)
\(\omega \) = Angular frequency \ (1/s)
\(C_b \) = Operating capacity \ (µF/km)
2.3 Inductance, Inductive reactance

The operating inductance in general depends on the relation between the conductor axis spacing and the external conductor diameter. Practically, two cases have to be considered:

Laying formation: *trefoil*

\[
\begin{align*}
L &= 2 \cdot 10^{-4} \cdot \ln\left(\frac{a}{0.779 \cdot r_L}\right) \text{ (H/km)}
\end{align*}
\]

with
- \(a\) = Phase axis distance (mm)
- \(r_L\) = Diameter of conductor over inner semiconducting layer (mm)

Laying formation: *flat*

\[
\begin{align*}
L_m &= 2 \cdot 10^{-4} \cdot \ln\left(\frac{a'}{0.779 \cdot r_L}\right) \text{ (H/km)}
\end{align*}
\]

with
- \(a' = \frac{\sqrt{3}}{2} \cdot a\) Mean geometric distance (mm)
- \(a\) = Phase axis distance (mm)
- \(r_L\) = Diameter of conductor over inner semiconducting layer (mm)

The inductive reactance of the cable system calculates for both cases as:

\[
X = \omega \cdot L \text{ [Ω/km]}
\]

with
- \(\omega\) = Angular frequency (1/s)

2.4 Losses in cables

Voltage-dependent and current-dependent power losses occur in cables.

I) Voltage-dependent losses

Voltage-dependent power losses are caused by polarization effects within the main insulation. They calculate to:

\[
P_d = U_o^2 \cdot \omega \cdot C_b \cdot \tan \delta \text{ (W/km)}
\]

with
- \(U_o\) = Operating voltage (kV)
- \(\omega\) = Angular frequency (1/s)
- \(C_b\) = Operating capacity (μF/km)

Dielectric power loss factors \(\tan \delta\) for typical cable insulations are:
- XLPE: \((1.5 \text{ to } 3.5) \times 10^{2^4}\)
- EPR: \((10 \text{ to } 30) \times 10^{2^4}\)
- Oil cable: \((18 \text{ to } 30) \times 10^{2^4}\)

II) Current-dependent losses

The current-dependent losses consist of the following components:
- Ohmic conductor losses
- Losses through skin effect
- Losses through proximity effect
- Losses in the metal sheath

Ohmic conductor losses

The ohmic losses depend on material and temperature. For the calculation of the ohmic losses \(R^L\), the conductor resistance stated for 20°C \((R_0)\) must be converted to the operating temperature \(\theta\) of the cable:

\[
R = R_0 \left[1 + \alpha (\theta - 20^\circ\text{C})\right] \text{ [Ω/km]}
\]

with
- \(\alpha = 0.0393\) for Copper
- \(\alpha = 0.0403\) for Aluminium

The conductor cross-section and admissible DC resistances at 20°C \((R_0)\) correspond to the standards series pursuant to IEC 60228.
Losses through skin effect

The losses caused by the skin effect, meaning the displacement of the current against the conductor surface, rise approximately quadratic with the frequency. This effect can be reduced with suitable conductor constructions, e.g. segmented conductors.

Losses through proximity effect

The proximity effect detects the additional losses caused by magnet fields of parallel conductors through eddy currents and current displacement effects in the conductor and cable sheath. In practice, their influence is of less importance, because three-conductor cables are only installed up to medium cross-sections and single-conductor cables with large cross-sections with sufficient axis space. The resistance increase through proximity effects relating to the conductor resistance is therefore mainly below 10%.

2.5 Earthing methods, induced voltage

High voltage cables have a metallic sheath, along which a voltage is induced as a function of the operating current. In order to handle this induced voltage, both cable ends have to be bonded sufficiently to the earthing system. The following table gives an overview of the possible methods and their characteristics:

<table>
<thead>
<tr>
<th>Earthing method</th>
<th>Standing voltage at cable ends</th>
<th>Sheath voltage limiters required</th>
<th>Typical application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both-end bonding</td>
<td>No</td>
<td>No</td>
<td>Substations, short connections, hardly applied for HV cables, rather for MV and LV cables</td>
</tr>
<tr>
<td>Single-end bonding</td>
<td>Yes</td>
<td>Yes</td>
<td>Usually only for circuit lengths up to 1 km</td>
</tr>
<tr>
<td>Cross-bonding</td>
<td>Only at cross-bonding points</td>
<td>Yes</td>
<td>Long distance connections where joints are required</td>
</tr>
</tbody>
</table>

Overview of earthing methods and their characteristics

Both-end bonding

Both ends of the cable sheath are connected to the system earth. With this method no standing voltages occur at the cable ends, which makes it the most secure regarding safety aspects. On the other hand, circulating currents may flow in the sheath as the loop between the two earthing points is closed through the ground. These circulating currents are proportional to the conductor currents and therefore reduce the cable ampacity significantly making it the most disadvantageous method regarding economic aspects.
Single-ended Bonding

One end of the cable sheath is connected to the system earth, so that at the other end (open end) the standing voltage appears, which is induced linearly along the cable length. In order to ensure the relevant safety requirements, the open end of the cable sheath has to be protected with a surge arrester. In order to avoid potential lifting in case of a failure, both earth points have to be connected additionally with an earth continuity wire. The surge arrester (sheath voltage limiter) is designed to deflect switching and atmospheric surges but must not trigger in case of a short-circuit.

Cross-bonding

This earthing method shall be applied for longer route lengths where joints are required due to the limited cable delivery length. A cross-bonding system consists of three equal sections with cyclic sheath crossing after each section. The termination points shall be solidly bonded to earth.

Along each section, a standing voltage is induced. In ideal cross-bonding systems the three section lengths are equal, so that no residual voltage occurs and thus no sheath current flows. The sheath losses can be kept very low with this method without impairing the safety as in the two-sided sheath earthing.

Very long route lengths can consist of several cross-bonding systems in a row. In this case, it is recommended to maintain solid bonding of the system ends in order to prevent travelling surges in case of a fault.

In addition to cross-linking the sheaths, the conductor phases can be transposed cyclicly. This solution is especially suited for very long cable lengths or parallel circuits.
Calculation of the induced voltage

The induced voltage U_i within a cable system depends on the mutual inductance between core and sheath, the conductor current and finally on the cable length:

$$U_i = X_M \cdot I \cdot L \quad (V)$$

with

- X_M = Mutual inductance between core and sheath (Ω/km)
- I = Conductor current per phase (A)
- L = Cable length

Two cases must be considered for the determination of the maximum occurring voltage and for the dimensioning of the surge arresters:

- $I = I_N$ Normal operating current (A)
- $I = I_c$ Three-pole Short-circuit current (A)

The mutual inductance between core and sheath calculates from the following formula:

$$X_M = \omega \cdot L_M \quad (\Omega/km)$$

with

- ω = Angular frequency (1/s)

and where L_M is the mutual inductivity between core and sheath (H/km).

The mutual inductivity between core and sheath L_M calculates as follows:

For installation in *trefoil* formation:

$$L_M = 2 \cdot 10^{-7} \cdot \ln \left(\frac{2a}{d_M} \right) \quad (H/km)$$

For installation in *flat* formation:

$$L_M = 2 \cdot 10^{-7} \cdot \ln \left(\frac{2\sqrt{2} \cdot a}{d_M} \right) \quad (H/km)$$

with

- a = Axial spacing (mm)
- d_M = Mean sheath diameter (mm)

2.6 Short-Circuit current capacity

For the cable system layout, the maximum short-circuit current capacity for both the conductor and the metallic sheath must be calculated.

Both values are depending on

- the duration of the short-circuit current
- the material of the current carrying component
- the type of material of the adjacent components and their admissible temperature

The duration of a short circuit consists of the inherent delay of the circuit breaker and the relay time.

Short-Circuit current capacity of conductors

The following table contains the maximum admissible short-circuit currents $I_{k,1s}$ for conductors acc. to IEC 60949 with a duration of 1 second for the different conductor and insulation types.

<table>
<thead>
<tr>
<th>Insulation material</th>
<th>XLPE</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor material</td>
<td>Cu</td>
<td>Al</td>
</tr>
<tr>
<td>mm²</td>
<td>kA 1s: 90..250°C</td>
<td>kA 1s: 85..165°C</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>2500</td>
<td>358</td>
<td>237</td>
</tr>
<tr>
<td>2000</td>
<td>287</td>
<td>190</td>
</tr>
<tr>
<td>1600</td>
<td>229</td>
<td>152</td>
</tr>
<tr>
<td>1400</td>
<td>201</td>
<td>133</td>
</tr>
<tr>
<td>1200</td>
<td>172</td>
<td>114</td>
</tr>
<tr>
<td>1000</td>
<td>143</td>
<td>95</td>
</tr>
<tr>
<td>800</td>
<td>115</td>
<td>76</td>
</tr>
<tr>
<td>630</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>500</td>
<td>72</td>
<td>47</td>
</tr>
<tr>
<td>400</td>
<td>57</td>
<td>38</td>
</tr>
<tr>
<td>300</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>240</td>
<td>34</td>
<td>23</td>
</tr>
</tbody>
</table>

Admissible short-circuit currents
Based on these reference values, the short-circuit currents for other durations can be converted with the following formula:

\[I_{k,x} = \frac{1}{\sqrt{t_c}} \cdot I_{k,1s} \]

with
- \(I_{k,x} \) = Short-circuit current during \(x \) seconds \([kA]\)
- \(t_c \) = Duration of short-circuit \([s]\)
- \(I_{k,1s} \) = Short-circuit current during 1 second \([kA]\)

The above stated values were calculated on a non-adiabatic basis, which means that heat transfer from the current carrying component to its adjacent components is allowed.

Short-Circuit current capacity of metallic sheaths

In addition to the above mentioned, the short-circuit current capacity of metallic sheaths depends on their layout. The short-circuit current capacity is different for tubular sheaths and wire screens, but generally the total short-circuit current capacity of a metallic sheath is the sum of the capacity of its components.

Typical metallic sheath layouts with their constructional details are listed in a separate section.

2.7 Dynamic forces

Single-core cables have to be fixed in their position at certain intervals. The calculation of dynamic forces for cable systems is important for the determination of the fixing interval and the layout of the fixing devices. It has to be distinguished between radial (e.g. clamps, spacers) and tangential (belts etc.) forces.

The amplitude of a dynamic force in general is calculated applying the following formula:

\[F_s = \frac{2 \cdot 10^{-7} \cdot t_s^2}{a} \text{ (kN/m)} \]

with
- \(a \) = Phase axis distance (mm)
- \(t_s \) = \(\kappa \cdot \sqrt{2} \cdot t_c \)

wherein
- \(t_s \) = Impulse short-circuit current \([kA]\)
- \(\kappa \) = surge factor (usually defined as 1.8)
- \(t_c \) = Short-circuit current \([kA]\)

Radial force

The dynamic force that a spacer has to absorb is:

\[F_r = \alpha \cdot F_s \]

\(F_s \) = Dynamic force \([kN/m]\)
\(\alpha \) = Layout factor (typical value for mid phase: 0.866)

Tangential force

The dynamic force that a fixing belt has to absorb is:

\[F_t = \beta \cdot F_s \]

\(F_s \) = Dynamic force \([kN/m]\)
\(\beta \) = Layout factor (value for trefoil: 0.5)

2.8 Metallic sheath types

The metallic sheath of high voltage XLPE single core cables has to fulfill the following electrical requirements:
- Conducting the earth fault current
- Returning the capacitive charging current
- Limitation of the radial electrostatic field
- Shielding of the electromagnetic field

Since high voltage XLPE cables are very sensitive to moisture ingestion, the metallic sheath also serves as radial moisture barrier. There are several modes of preventing water and moisture penetrating into the cable and travelling within it along its length. Solutions for closed metallic sheathes can be based on welding, extruding or gluing. Some typical sheath layouts as available from Brugg Cables are shown in the following table.
Typical metallic sheath types

Brugg type XDRCU-ALT

Aluminium laminated sheath with Copper wire screen

Features:
- Low weight
- Low losses
- Low cost

Typical application:
Installation in tunnels, trenches or ducts

Brugg type XDRCU-ALT

Aluminium laminated sheath with Copper wire screen and integrated fibres for temperature sensing

Features:
- Low weight
- Low losses
- Low cost

Typical applications:
Installation in tunnels, trenches or ducts

Brugg type XDRCU-CUT

Copper laminated sheath with Copper wire screen

Features:
- Low weight
- Low losses
- Low cost

Typical applications:
Installation in tunnels, trenches or ducts

Brugg type XDCUW-T

Copper corrugated sheath

Features:
- 100% impervious to moisture
- Flexible
- Resistant to deformation, pressure and corrosion
- Welded

Typical applications:
All installations in soil, especially in locations with shallow ground water level

Special application:
Installation in vertical shafts (up to 220 m)

Brugg type XDPB-T

Lead sheath

Features:
- 100% impervious to moisture
- Seamless
- Extruded

Typical applications:
All installations in soil

Brugg type XDRCU-PBT

Lead sheath with Copper wire screen

Features:
- 100% impervious to moisture
- Seamless
- Extruded
- Increased short-circuit capacity through additional copper wire screen

Typical applications:
All installations in soil
3. XLPE Cable System Standards

Brugg Cables’ XLPE cable systems are designed to meet requirements set in national and international standards. Some of these are listed below.

IEC

XLPE cable systems specified according to IEC (International Electrotechnical Commission) are among many other standards accepted.

Some frequently used standards are:

- **IEC 60183**: Guide to the selection of high-voltage cables.
- **IEC 60228**: Conductors of insulated cables.
- **IEC 60229**: Tests on cable oversheaths which have a special protective function and are applied by extrusion.
- **IEC 60287**: Electric cables - Calculation of the current rating.
- **IEC 60332**: Tests on electric cables under fire conditions.
- **IEC 60811**: Common test methods for insulating and sheathing materials of electric cables.
- **IEC 60840**: Power cables with extruded insulation and their accessories for rated voltage above 30 kV (Um=36 kV) up to 150 kV (Um=170 kV). Test methods and requirements.
- **IEC 60853**: Calculation of the cyclic and emergency current rating of cables.
- **IEC 61443**: Short-circuit temperature limits of electric cables with rated voltages above 30 kV (Um=36 kV).
- **IEC 62067**: Power cables with extruded insulation and their accessories for rated voltage above 150 kV (Um=170 kV) up to 500 kV (Um=550 kV) - Test methods and requirements.

CENELEC

In Europe, cable standards are issued by CENELEC. (European Committee for Electrotechnical Standardisation.) Special features in design may occur depending on national conditions.

- **HD 632**: Power cables with extruded insulation and their accessories for rated voltage above 36 kV (Um=42 kV) up to 150 kV (Um=170 kV). Part 1- General test requirements.

Part 1 is based on IEC 60840 and follows that standard closely. HD 632 is completed with a number of parts and subsections for different cables intended to be used under special conditions which can vary nationally in Europe.

ICEA / ANSI / AEIC

For North America cables are often specified according to

- AEIC (Association of Edison Illuminating Companies)
- ICEA (Insulated Cable Engineers Association)
- ANSI (American National Standards Institute)

The most frequently standards referred to are:

- **AEIC CS7-93**: Specifications for crosslinked polyethylene insulated shielded power cables rated 69 through 138 kV.
- **ANSI / ICEA S-108-720-2004**: Standard for extruded insulation power cables rated above 46 through 345 kV.

ISO Standards

Our systems comply with the requirements of ISO 9001 and ISO 14001 and are certified by Bureau Veritas Quality International.
4. Technical data sheets

500 / 290 kV XLPE Cable - Technical data and Ampacity

400 / 230 kV XLPE Cable - Technical data and Ampacity

345 / 200 kV XLPE Cable - Technical data and Ampacity

220 / 127 kV XLPE Cable - Technical data and Ampacity

132 / 76 kV XLPE Cable - Technical data and Ampacity
Single-core XLPE High Voltage Cable with Aluminium laminated sheath

Cable layout
- Copper conductor, stranded, cross-sections of 1000 sqmm and above segmented, optionally with longitudinal water barrier
- Inner semiconductive layer, firmly bonded to the XLPE insulation
- XLPE main insulation, cross-linked
- Outer semiconductive layer, firmly bonded to the XLPE insulation
- Copper wire screen with semi-conductive swelling tapes as longitudinal water barrier
- Aluminium laminated sheath
- HDPE oversheath, halogen-free, as mechanical protection, optionally: with semi-conductive and/or flame-retardant layer

Production process
The inner semiconductive layer, the XLPE main insulation and the outer semiconductive layer are extruded in a single operation.

Special features of metallic sheath
- Copper wire screen as short-circuit current carrying component
- Aluminium foil, overlapped, 0.25 mm thick, as radial diffusion barrier
- Low weight, low cost, internationally proven design

Applicable standards
IEC 62067 (2001)

Technical data

<table>
<thead>
<tr>
<th>Copper conductor cross-section</th>
<th>Outer diameter approx.</th>
<th>Cable weight approx.</th>
<th>Capacitance (90°C, 50 Hz) µF/km</th>
<th>Impedance (90°C, 50 Hz) Ω/km</th>
<th>Surge impedance υ</th>
<th>Min. bending radius mm</th>
<th>Max. pulling force kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td>mm</td>
<td>kN</td>
</tr>
<tr>
<td>630</td>
<td>1250</td>
<td>122</td>
<td>18</td>
<td>0.12</td>
<td>0.22</td>
<td>54</td>
<td>2450</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>123</td>
<td>20</td>
<td>0.14</td>
<td>0.20</td>
<td>49</td>
<td>2500</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>127</td>
<td>23</td>
<td>0.16</td>
<td>0.19</td>
<td>47</td>
<td>2550</td>
</tr>
<tr>
<td>1200</td>
<td>2400</td>
<td>128</td>
<td>24</td>
<td>0.17</td>
<td>0.19</td>
<td>44</td>
<td>2600</td>
</tr>
<tr>
<td>1400</td>
<td>2750</td>
<td>129</td>
<td>26</td>
<td>0.19</td>
<td>0.18</td>
<td>42</td>
<td>2600</td>
</tr>
<tr>
<td>1600</td>
<td>3200</td>
<td>135</td>
<td>29</td>
<td>0.19</td>
<td>0.18</td>
<td>42</td>
<td>2700</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>143</td>
<td>34</td>
<td>0.19</td>
<td>0.17</td>
<td>40</td>
<td>2900</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>144</td>
<td>40</td>
<td>0.23</td>
<td>0.17</td>
<td>37</td>
<td>2900</td>
</tr>
</tbody>
</table>

Ampacity

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Buried in soil 0.7</th>
<th>Buried in soil 1.0</th>
<th>Buried in soil 0.7</th>
<th>Buried in soil 1.0</th>
<th>In free air -</th>
<th>In free air -</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>630</td>
<td>1250</td>
<td>954</td>
<td>806</td>
<td>1026</td>
<td>882</td>
<td>1053</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>1076</td>
<td>901</td>
<td>1170</td>
<td>998</td>
<td>1211</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>1268</td>
<td>1055</td>
<td>1377</td>
<td>1166</td>
<td>1452</td>
</tr>
<tr>
<td>1200</td>
<td>2400</td>
<td>1369</td>
<td>1134</td>
<td>1497</td>
<td>1261</td>
<td>1588</td>
</tr>
<tr>
<td>1400</td>
<td>2750</td>
<td>1473</td>
<td>1215</td>
<td>1622</td>
<td>1361</td>
<td>1728</td>
</tr>
<tr>
<td>1600</td>
<td>3200</td>
<td>1561</td>
<td>1286</td>
<td>1718</td>
<td>1440</td>
<td>1835</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>1711</td>
<td>1403</td>
<td>1901</td>
<td>1585</td>
<td>2045</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>1873</td>
<td>1522</td>
<td>2120</td>
<td>1751</td>
<td>2301</td>
</tr>
</tbody>
</table>

Calculation basis:
Conductor temperature 90°C, 50 Hz, soil temperature 25°C, laying depth 1200 mm, soil thermal resistivity 1.0 Km/W, phase distance at flat formation 30 cm, air temperature 35°C - Earthing method: Single-end bonding or Cross-bonding
Single-core XLPE High Voltage Cable with Aluminium laminated sheath

Cable layout
- Copper conductor, stranded, cross-sections of 1000 sqmm and above segmented, optionally with longitudinal water barrier
- Inner semiconductive layer, firmly bonded to the XLPE insulation
- XLPE main insulation, cross-linked
- Copper wire screen with semi-conductive swelling tapes as longitudinal water barrier
- Aluminium laminated sheath
- HDPE oversheath, halogen-free, as mechanical protection, optionally: with semi-conductive and/or flame-retardant layer

Production process
The inner semiconductive layer, the XLPE main insulation and the outer semiconductive layer are extruded in a single operation.

Special features of metallic sheath
- Copper wire screen as short-circuit current carrying component
- Aluminium foil, overlapped, 0.25 mm thick, as radial diffusion barrier
- Low weight, low cost, internationally proven design

Applicable standards
IEC 62067 (2001)

Technical data

<table>
<thead>
<tr>
<th>Copper conductor cross-section</th>
<th>Outer diameter approx.</th>
<th>Cable weight approx.</th>
<th>Capacitance (90°C, 50 Hz)</th>
<th>Impedance</th>
<th>Surge impedance</th>
<th>Min. bending radius</th>
<th>Max. pulling force</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>mm</td>
<td>kg/m</td>
<td>μF/km</td>
<td>Ù/ km</td>
<td>Ù</td>
<td>mm</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>113</td>
<td>16</td>
<td>0.12</td>
<td>0.23</td>
<td>56</td>
<td>2300</td>
</tr>
<tr>
<td>630</td>
<td>1250</td>
<td>114</td>
<td>17</td>
<td>0.13</td>
<td>0.22</td>
<td>53</td>
<td>2300</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>115</td>
<td>18</td>
<td>0.15</td>
<td>0.20</td>
<td>48</td>
<td>2300</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>118</td>
<td>21</td>
<td>0.17</td>
<td>0.19</td>
<td>45</td>
<td>2400</td>
</tr>
<tr>
<td>1200</td>
<td>2400</td>
<td>122</td>
<td>24</td>
<td>0.19</td>
<td>0.19</td>
<td>43</td>
<td>2450</td>
</tr>
<tr>
<td>1400</td>
<td>2750</td>
<td>123</td>
<td>25</td>
<td>0.20</td>
<td>0.18</td>
<td>41</td>
<td>2450</td>
</tr>
<tr>
<td>1600</td>
<td>3200</td>
<td>128</td>
<td>28</td>
<td>0.20</td>
<td>0.18</td>
<td>40</td>
<td>2600</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>135</td>
<td>33</td>
<td>0.21</td>
<td>0.17</td>
<td>39</td>
<td>2700</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>136</td>
<td>38</td>
<td>0.26</td>
<td>0.17</td>
<td>35</td>
<td>2700</td>
</tr>
</tbody>
</table>

Ampacity

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Buried in soil</th>
<th>Buried in soil</th>
<th>Buried in soil</th>
<th>Buried in soil</th>
<th>In free air</th>
<th>In free air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>853</td>
<td>723</td>
<td>912</td>
<td>788</td>
<td>924</td>
</tr>
<tr>
<td>630</td>
<td>1250</td>
<td>972</td>
<td>819</td>
<td>1049</td>
<td>900</td>
<td>1068</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>1098</td>
<td>917</td>
<td>1199</td>
<td>1020</td>
<td>1228</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>1298</td>
<td>1076</td>
<td>1416</td>
<td>1195</td>
<td>1478</td>
</tr>
<tr>
<td>1200</td>
<td>2400</td>
<td>1402</td>
<td>1158</td>
<td>1534</td>
<td>1290</td>
<td>1612</td>
</tr>
<tr>
<td>1400</td>
<td>2750</td>
<td>1509</td>
<td>1241</td>
<td>1665</td>
<td>1394</td>
<td>1755</td>
</tr>
<tr>
<td>1600</td>
<td>3200</td>
<td>1600</td>
<td>1315</td>
<td>1767</td>
<td>1477</td>
<td>1869</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>1760</td>
<td>1440</td>
<td>1956</td>
<td>1628</td>
<td>2078</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>1931</td>
<td>1565</td>
<td>2190</td>
<td>1804</td>
<td>2347</td>
</tr>
</tbody>
</table>

Calculation basis:
Conductor temperature 90°C, 50 Hz, soil temperature 25°C, laying depth 1200 mm, soil thermal resistivity 1.0 Km/W, phase distance at flat formation 30 cm, air temperature 35° - Earthing method: Single-end bonding or Cross-bonding

Values apply for cables with rated voltages from 380 kV to 400 kV acc. to IEC 62067
Single-core XLPE High Voltage Cable with Aluminium laminated sheath

Cable layout
- Copper conductor, stranded, cross-sections of 1000 sqmm and above segmented, optionally with longitudinal water barrier
- Inner semiconductive layer, firmly bonded to the XLPE insulation
- XLPE main insulation, cross-linked
- Outer semiconductive layer, firmly bonded to the XLPE insulation
- Copper wire screen with semi-conductive swelling tapes as longitudinal water barrier
- Aluminium laminated sheath
- HDPE oversheath, halogen-free, as mechanical protection, optionally: with semi-conductive and/or flame-retardant layer

Production process
The inner semiconductive layer, the XLPE main insulation and the outer semiconductive layer are extruded in a single operation.

Special features of metallic sheath
- Copper wire screen as short-circuit current carrying component
- Aluminium foil, overlapped, 0.25 mm thick, as radial diffusion barrier
- Low weight, low cost, internationally proven design

Applicable standards
IEC 62067 (2001)
ANSI / ICEA S-108-720-2004

Technical data

<table>
<thead>
<tr>
<th>Copper conductor cross-section</th>
<th>Outer diameter approx. mm</th>
<th>Cable weight approx. kg/m</th>
<th>Capacitance (90°C, 50 Hz) µF/km</th>
<th>Impedance (90°C, 50 Hz) Ω/km</th>
<th>Surge impedance Ù</th>
<th>Min. bending radius mm</th>
<th>Max. pulling force kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>500</td>
<td>113</td>
<td>16</td>
<td>0.12</td>
<td>0.23</td>
<td>56</td>
</tr>
<tr>
<td>630</td>
<td>150</td>
<td>122</td>
<td>24</td>
<td>0.19</td>
<td>0.19</td>
<td>44</td>
<td>2450</td>
</tr>
<tr>
<td>800</td>
<td>160</td>
<td>128</td>
<td>28</td>
<td>0.20</td>
<td>0.18</td>
<td>40</td>
<td>2600</td>
</tr>
<tr>
<td>1000</td>
<td>200</td>
<td>135</td>
<td>33</td>
<td>0.21</td>
<td>0.17</td>
<td>39</td>
<td>2700</td>
</tr>
<tr>
<td>1200</td>
<td>240</td>
<td>136</td>
<td>38</td>
<td>0.26</td>
<td>0.17</td>
<td>35</td>
<td>2700</td>
</tr>
</tbody>
</table>

Ampacity

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Buried in soil in free air</th>
<th>In free air in free air</th>
<th>In free air in free air</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>859</td>
<td>728</td>
<td>918</td>
<td>793</td>
<td>927</td>
</tr>
<tr>
<td>630</td>
<td>1250</td>
<td>980</td>
<td>825</td>
<td>1056</td>
<td>906</td>
<td>1072</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>1108</td>
<td>925</td>
<td>1208</td>
<td>1027</td>
<td>1233</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>1311</td>
<td>1087</td>
<td>1427</td>
<td>1205</td>
<td>1485</td>
</tr>
<tr>
<td>1200</td>
<td>2400</td>
<td>1416</td>
<td>1170</td>
<td>1547</td>
<td>1301</td>
<td>1619</td>
</tr>
<tr>
<td>1400</td>
<td>2750</td>
<td>1526</td>
<td>1255</td>
<td>1680</td>
<td>1407</td>
<td>1763</td>
</tr>
<tr>
<td>1600</td>
<td>3200</td>
<td>1617</td>
<td>1329</td>
<td>1783</td>
<td>1491</td>
<td>1877</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>1780</td>
<td>1456</td>
<td>1975</td>
<td>1643</td>
<td>2088</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>1956</td>
<td>1586</td>
<td>2214</td>
<td>1825</td>
<td>2359</td>
</tr>
</tbody>
</table>

Calculation basis:
Conductor temperature 90°C, 50 Hz, soil temperature 25°C, laying depth 1200 mm, soil thermal resistivity 1.0 Km/W, phase distance at flat formation 30 cm, air temperature 35°C - Earthing method: Single-end bonding or Cross-bonding

Values apply for cables with rated voltages from 330 kV to 345 kV acc. to IEC 62067
Single-core XLPE High Voltage Cable with Aluminium laminated sheath

Cable layout
- Copper conductor, stranded, cross-sections of 1000 sqmm and above segmented, optionally with longitudinal water barrier
- Inner semiconductive layer, firmly bonded to the XLPE insulation
- XLPE main insulation, cross-linked
- Outer semiconductive layer, firmly bonded to the XLPE insulation
- Copper wire screen with semi-conductive swelling tapes as longitudinal water barrier
- Aluminium laminated sheath
- HDPE oversheath, halogen-free, as mechanical protection, optionally: with semi-conductive and/or flame-retardant layer

Production process
The inner semiconductive layer, the XLPE main insulation and the outer semiconductive layer are extruded in a single operation.

Special features of metallic sheath
- Copper wire screen as short-circuit current carrying component
- Aluminium foil, overlapped, 0.25 mm thick, as radial diffusion barrier
- Low weight, low cost, internationally proven design

Applicable standards
IEC 62067 (2001)
ANSI / ICEA S-108-720-2004

Technical data

<table>
<thead>
<tr>
<th>Copper conductor cross-section</th>
<th>Outer diameter approx. mm</th>
<th>Cable weight approx. kg/m</th>
<th>Capacitance (90°C, 50 Hz) µF/km</th>
<th>Impedance (90°C, 50 Hz) ū/ū/km</th>
<th>Surge impedance ū</th>
<th>Min. bending radius mm</th>
<th>Max. pulling force kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 sqmm</td>
<td>99</td>
<td>12</td>
<td>0.11</td>
<td>0.25</td>
<td>59</td>
<td>2000</td>
<td>18</td>
</tr>
<tr>
<td>500 sqmm</td>
<td>99</td>
<td>13</td>
<td>0.13</td>
<td>0.23</td>
<td>54</td>
<td>2000</td>
<td>30</td>
</tr>
<tr>
<td>630 sqmm</td>
<td>100</td>
<td>15</td>
<td>0.15</td>
<td>0.22</td>
<td>51</td>
<td>2000</td>
<td>38</td>
</tr>
<tr>
<td>800 sqmm</td>
<td>105</td>
<td>17</td>
<td>0.18</td>
<td>0.20</td>
<td>46</td>
<td>2100</td>
<td>48</td>
</tr>
<tr>
<td>1000 sqmm</td>
<td>111</td>
<td>20</td>
<td>0.19</td>
<td>0.19</td>
<td>44</td>
<td>2250</td>
<td>60</td>
</tr>
<tr>
<td>1200 sqmm</td>
<td>112</td>
<td>22</td>
<td>0.22</td>
<td>0.19</td>
<td>41</td>
<td>2250</td>
<td>72</td>
</tr>
<tr>
<td>1400 sqmm</td>
<td>115</td>
<td>24</td>
<td>0.22</td>
<td>0.18</td>
<td>40</td>
<td>2300</td>
<td>84</td>
</tr>
<tr>
<td>1600 sqmm</td>
<td>116</td>
<td>26</td>
<td>0.25</td>
<td>0.18</td>
<td>38</td>
<td>2350</td>
<td>96</td>
</tr>
<tr>
<td>2000 sqmm</td>
<td>119</td>
<td>30</td>
<td>0.27</td>
<td>0.17</td>
<td>36</td>
<td>2400</td>
<td>120</td>
</tr>
<tr>
<td>2500 sqmm</td>
<td>129</td>
<td>37</td>
<td>0.28</td>
<td>0.17</td>
<td>34</td>
<td>2600</td>
<td>150</td>
</tr>
</tbody>
</table>

Ampacity

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Buried in soil 0.7 ūūū</th>
<th>Buried in soil 1.0 ūūū</th>
<th>Buried in soil 0.7 ūūū</th>
<th>Buried in soil 1.0 ūūū</th>
<th>In free air 0 ūūū</th>
<th>In free air 1 ūūū</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>kcmil</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>300 sqmm</td>
<td>600</td>
<td>670</td>
<td>714</td>
<td>621</td>
<td>707</td>
<td>768</td>
</tr>
<tr>
<td>500 sqmm</td>
<td>1000</td>
<td>877</td>
<td>945</td>
<td>813</td>
<td>944</td>
<td>1038</td>
</tr>
<tr>
<td>630 sqmm</td>
<td>1250</td>
<td>1001</td>
<td>1090</td>
<td>930</td>
<td>1092</td>
<td>1213</td>
</tr>
<tr>
<td>800 sqmm</td>
<td>1600</td>
<td>1130</td>
<td>1241</td>
<td>1051</td>
<td>1252</td>
<td>1405</td>
</tr>
<tr>
<td>1000 sqmm</td>
<td>2000</td>
<td>1339</td>
<td>1462</td>
<td>1231</td>
<td>1508</td>
<td>1687</td>
</tr>
<tr>
<td>1200 sqmm</td>
<td>2400</td>
<td>1540</td>
<td>1595</td>
<td>1336</td>
<td>1651</td>
<td>1863</td>
</tr>
<tr>
<td>1400 sqmm</td>
<td>2750</td>
<td>1750</td>
<td>1725</td>
<td>1440</td>
<td>1791</td>
<td>2031</td>
</tr>
<tr>
<td>1600 sqmm</td>
<td>3200</td>
<td>1857</td>
<td>1847</td>
<td>1536</td>
<td>1919</td>
<td>2195</td>
</tr>
<tr>
<td>2000 sqmm</td>
<td>4000</td>
<td>1957</td>
<td>2060</td>
<td>1703</td>
<td>2147</td>
<td>2490</td>
</tr>
<tr>
<td>2500 sqmm</td>
<td>5000</td>
<td>2002</td>
<td>2182</td>
<td>1876</td>
<td>2397</td>
<td>2815</td>
</tr>
</tbody>
</table>

Calculation basis:
Conductor temperature 90°C, 50 Hz, soil temperature 25°C, laying depth 1200 mm, soil thermal resistivity 1.0 Km/W, phase distance at flat formation 30 cm, air temperature 35° - Earthing method: Single-end bonding or Cross-bonding

Values apply for cables with rated voltages from 220 kV to 230 kV acc. to IEC 62067

© 05.2006 Subject to modifications
Single-core XLPE High Voltage Cable with Aluminium laminated sheath

Cable layout
- Copper conductor, stranded, cross-sections of 1000 sqmm and above segmented, optionally with longitudinal water barrier
- Inner semiconductive layer, firmly bonded to the XLPE insulation
- XLPE main insulation, cross-linked
- Outer semiconductive layer, firmly bonded to the XLPE insulation
- Copper wire screen with semi-conductive swelling tapes as longitudinal water barrier
- Aluminium laminated sheath
- HDPE oversheath, halogen-free, as mechanical protection, optionally: with semi-conductive and/or flame-retardant layer

Production process
The inner semiconductive layer, the XLPE main insulation and the outer semiconductive layer are extruded in a single operation.

Special features of metallic sheath
- Copper wire screen as short-circuit current carrying component
- Aluminium foil, overlapped, 0.25 mm thick, as radial diffusion barrier
- Low weight, low cost, internationally proven design

Applicable standards
IEC 60840 (2004-04)
AEIC CS7-93
ANSI / ICEA S-108-720-2004

Technical data

<table>
<thead>
<tr>
<th>Copper conductor cross-section</th>
<th>Outer diameter approx. mm</th>
<th>Cable weight approx. kg/m</th>
<th>Capacitance µF/km</th>
<th>Impedance (90°C, 50 Hz) ±</th>
<th>Surge impedance ±</th>
<th>Min. bending radius mm</th>
<th>Max. pulling force kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 kcmil</td>
<td>73</td>
<td>6</td>
<td>0.13</td>
<td>0.26</td>
<td>59</td>
<td>1500</td>
<td>14</td>
</tr>
<tr>
<td>300 kcmil</td>
<td>76</td>
<td>7</td>
<td>0.14</td>
<td>0.25</td>
<td>49</td>
<td>1550</td>
<td>18</td>
</tr>
<tr>
<td>400 kcmil</td>
<td>77</td>
<td>8</td>
<td>0.16</td>
<td>0.23</td>
<td>49</td>
<td>1600</td>
<td>24</td>
</tr>
<tr>
<td>500 kcmil</td>
<td>83</td>
<td>9</td>
<td>0.16</td>
<td>0.22</td>
<td>49</td>
<td>1700</td>
<td>30</td>
</tr>
<tr>
<td>630 kcmil</td>
<td>86</td>
<td>10</td>
<td>0.18</td>
<td>0.22</td>
<td>49</td>
<td>1750</td>
<td>38</td>
</tr>
<tr>
<td>800 kcmil</td>
<td>97</td>
<td>14</td>
<td>0.27</td>
<td>0.19</td>
<td>39</td>
<td>1850</td>
<td>60</td>
</tr>
<tr>
<td>1000 kcmil</td>
<td>95</td>
<td>15</td>
<td>0.30</td>
<td>0.19</td>
<td>37</td>
<td>1900</td>
<td>72</td>
</tr>
<tr>
<td>1200 kcmil</td>
<td>96</td>
<td>21</td>
<td>0.34</td>
<td>0.18</td>
<td>34</td>
<td>1950</td>
<td>84</td>
</tr>
<tr>
<td>1400 kcmil</td>
<td>99</td>
<td>22</td>
<td>0.35</td>
<td>0.18</td>
<td>33</td>
<td>2000</td>
<td>96</td>
</tr>
<tr>
<td>1600 kcmil</td>
<td>104</td>
<td>27</td>
<td>0.39</td>
<td>0.17</td>
<td>31</td>
<td>2100</td>
<td>120</td>
</tr>
<tr>
<td>2000 kcmil</td>
<td>111</td>
<td>33</td>
<td>0.43</td>
<td>0.17</td>
<td>29</td>
<td>2250</td>
<td>150</td>
</tr>
<tr>
<td>2500 kcmil</td>
<td>124</td>
<td>43</td>
<td>0.43</td>
<td>0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ampacity

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Buried in soil 0.7</th>
<th>Buried in soil 1.0</th>
<th>Buried in soil 0.7</th>
<th>Buried in soil 1.0</th>
<th>In free air 0.7</th>
<th>In free air 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm² kcmil</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>240 kcmil</td>
<td>607</td>
<td>513</td>
<td>657</td>
<td>569</td>
<td>631</td>
<td>698</td>
</tr>
<tr>
<td>300 kcmil</td>
<td>687</td>
<td>579</td>
<td>745</td>
<td>642</td>
<td>721</td>
<td>799</td>
</tr>
<tr>
<td>400 kcmil</td>
<td>789</td>
<td>660</td>
<td>861</td>
<td>737</td>
<td>837</td>
<td>936</td>
</tr>
<tr>
<td>500 kcmil</td>
<td>896</td>
<td>748</td>
<td>979</td>
<td>836</td>
<td>960</td>
<td>1074</td>
</tr>
<tr>
<td>630 kcmil</td>
<td>1020</td>
<td>847</td>
<td>1123</td>
<td>953</td>
<td>1107</td>
<td>1249</td>
</tr>
<tr>
<td>800 kcmil</td>
<td>1154</td>
<td>949</td>
<td>1292</td>
<td>1086</td>
<td>1275</td>
<td>1467</td>
</tr>
<tr>
<td>1000 kcmil</td>
<td>1377</td>
<td>1126</td>
<td>1530</td>
<td>1276</td>
<td>1550</td>
<td>1776</td>
</tr>
<tr>
<td>1200 kcmil</td>
<td>1488</td>
<td>1212</td>
<td>1661</td>
<td>1380</td>
<td>1691</td>
<td>1947</td>
</tr>
<tr>
<td>1400 kcmil</td>
<td>1605</td>
<td>1302</td>
<td>1810</td>
<td>1497</td>
<td>1843</td>
<td>2147</td>
</tr>
<tr>
<td>1600 kcmil</td>
<td>1699</td>
<td>1377</td>
<td>1925</td>
<td>1589</td>
<td>1964</td>
<td>2297</td>
</tr>
<tr>
<td>2000 kcmil</td>
<td>1869</td>
<td>1507</td>
<td>2147</td>
<td>1763</td>
<td>2195</td>
<td>2603</td>
</tr>
<tr>
<td>2500 kcmil</td>
<td>2050</td>
<td>1643</td>
<td>2396</td>
<td>1954</td>
<td>2456</td>
<td>2969</td>
</tr>
</tbody>
</table>

Calculation basis:
Conductor temperature 90°C, 50 Hz, soil temperature 25°C, laying depth 1200 mm, soil thermal resistivity 1.0 Km/W, phase distance at flat formation 30 cm, air temperature 35°C - Earthing method: Single-end bonding or Cross-bonding

Values apply for cables with rated voltages from 132 kV to 138 kV acc. to IEC 60840

© 05.2006 Subject to modifications
5. XLPE Cable Reference Projects from Brugg

BRUGG CABLES XLPE cable system experience above 220 kV dates back to the year 1990. Since then, more than 70 systems have been put in operation successfully in this voltage range all over the world.

Furthermore, BRUGG CABLES is one of the leading suppliers of oil-filled cables in the Middle East.
XLPE Cable Projects

Project:
345kV Circuits K-Street #1 and #2
115kV Circuit Hyde Park

Location:
Boston, USA

End-user:
NStar Electric & Gas

Scope of supply BRUGG:
345kV-XLPE-Kabel 1x2750kcmil (1400mm²)
total length: 2910 ft (0,9 km)
12 GIS Terminations 345kV

115kV-XLPE-Kabel 1x4000kcmil (2000mm²)
total length: 900 ft (0,3 km)
12 GIS Terminations 115kV

Commissioning:
Spring 2006
XLPE Cable Projects

Project:
Piacenza Repowering Project
380kV Connection lines

Location:
Piacenza, Italy

End-user:
EDIPOWER
(Joint Venture Edison, Italy & Atel, Switzerland)

Main contractor:
Consoritum Piacenza 800
(Techint, Fiat Engineering, Siemens)

Scope of supply BRUGG:
2.4 km 380kV-XLPE-Kabel 1x800mm²
12 GIS Terminations 380kV

Commissioning:
July 2005
XLPE Cable Projects

Project:
220kV Connection line
Combined Cycle Power Plant, Block A 800

Location:
Ludwigshafen, Germany

End-user:
BASF AG

Main contractor:
Siemens AG, Erlangen

Scope of supply BRUGG:
20.5 km 220kV XLPE Cable 1x 2000mm²
6.5 km 220kV XLPE Cable 1x 400mm²
9 Outdoor Terminations
15 GIS-/Transformer Terminations
12 Cross-Bonding Joints
33 Straight Joints

Commissioning:
October 2004
XLPE Cable Projects

Project:
400kV & 220kV Connection lines, Shuweihat IWPP

Location:
United Arab Emirates

End-user:
Abu Dhabi Water and Electricity Authority (ADWEA)

Main contractor:
Siemens AG, Erlangen

Scope of supply BRUGG:
- 9.2 km 400kV-XLPE-Kabel 1x 630mm²
- 15 Outdoor Terminations 400kV
- 15 GIS Terminations 400kV
- 0.8 km 220kV-XLPE-Kabel 1x1600mm²
- 3.7 km 220kV-XLPE-Kabel 1x 630mm²
- 12 Outdoor Terminations 220kV
- 12 GIS Terminations 220kV

Commissioning:
Autumn 2003
XLPE Cable Projects

Project:
275kV Connection lines, Substation Creux de Chippis

Location:
Switzerland (Valais)

End-user:
Power Stations Gougra Ltd.

Scope of supply BRUGG:
2 km 275kV XLPE Cable 1x 1200mm²
0.5 km 275kV XLPE Cable 1x 1600mm²
1 km 275kV XLPE Cable 1x 400mm²
36 GIS Terminations 300kV
10 Transformer Terminations 300kV
24 Outdoor Terminations 300kV

Commissioning:
May 1997
Project:
HPP Stalden
Replacement of two 275kV Cable connections

Location:
Valais, Switzerland

End-user:
KWM Kraftwerke Mattmark

Scope of supply BRUGG:
2.3 km 275kV XLPE Cable 1x400mm²
6 Outdoor Terminations 275kV
6 GIS Terminations 275kV

Commissioning:
Stage 1: November 2004
Stage 2: December 2005